

dtoolAI: Reproducibility for deep learning

Contents:

	Introducing dtoolAI
	What is dtoolAI?

	Installation
	Installing with pip

	Installing with conda

	Using a trained network model
	Download the scripts needed for this tutorial

	Applying the network to new data

	Finding out about the network

	Training a new model
	The dataset

	Training a network

	dtoolAI and URIs

	Applying the trained model to test data

	Viewing the trained model metadata

	What the code is doing

	Retraining a model
	Part 1: With a preprepared dataset

	Part 2: With raw data

	Extending dtoolAI
	New forms of training data

	API documentation
	dtoolai.data

	dtoolai.parameters

Indices and tables

	Index

	Module Index

	Search Page

Introducing dtoolAI

What is dtoolAI?

dtoolAI is a Python library to make reproducible AI model training and use
easier. The dtoolAI package provides:

	A Python API to a set of classes and helper functions for managing Deep
Learning model data, training and use.

	Scripts and command line functions for demonstrating use and automating
common tasks.

	Documentation in the form of both these documents and Jupyter notebooks that
show how to use the library.

In general, the documentation and scripts use image recognition to demonstrate
the library, but the lower level functions for packaging data and models, as
well as capturing training metadata can be used for a wide range of problem
domains.

dtoolAI makes use of dtool [https://dtool.readthedocs.io], a library for lightweight
data management to work with different data sources such as S3, Azure, HTTP and
local filesystem. dtoolAI uses pytorch [https://pytorch.org] for implementation of
AI models.

[image: _images/dtoolAI-architecture.png]

Installation

dtoolAI requires Python version 3 and Pytorch.

Warning

Install Pytorch before installing dtoolAI. For information on how to install Pytorch this see the
Pytorch getting started guide [https://pytorch.org/get-started/locally/]
for details. Version 1.4.0 of Pytorch and 0.5.0 of torchvision are definitely compatible with dtoolAI.

For Windows users, we’d recommend using conda to instal pytorch and torchvision, as per instructions below.

Installing with pip

You can install dtoolAI via the pip package manager:

pip install dtoolai

To understand the examples, it’s also useful to install the dtool meta package [https://dtool.readthedocs.io/]. This makes it easier to work with datasets created by dtoolAI:

pip install dtool

Running the example notebooks in the code repository also requires Jupyter:

pip install jupyter

Finally, if you want to run the test suite in the code repository, you’ll need
pytest.

pip install pytest

Installing with conda

You can install dtoolAI with conda as follows:

conda install pytorch==1.4.0 torchvision==0.5.0 -c pytorch
conda install dtoolcore dtool-http dtoolai -c dtool

This first installs a version of Pytorch known to work with dtoolAI. If you would
like to install the whole dtool command line suite, you’ll need to use pip:

pip install dtool

Using a trained network model

In this first example, we’ll look at how to apply a trained network to an image
that’s new to the network. We’ll then look at how dtoolAI allows us to find out
information about the data on which the model was trained and how it was
trained.

Download the scripts needed for this tutorial

The scripts for this tutorial can be found in https://github.com/JIC-CSB/dtoolai. The easiest way to get access to them is to clone the git repository.

$ git clone https://github.com/JIC-CSB/dtoolai.git

The examples in this documentation assumes that you are working from within the downloaded git repository. The command below updates the working directory to this location.

$ cd dtoolai

Applying the network to new data

Let’s start by trying to classify a new image. The image below is available in ./docs/source/non_mnist_three.png.

[image: _images/non_mnist_three.png]
Now run the script apply_model_to_image.py in the scripts/ directory
of the dtoolAI repository on the image, e.g.:

$ python scripts/apply_model_to_image.py http://bit.ly/2tbPzSB ./docs/source/non_mnist_three.png
Classified /Users/hartleym/Downloads/three.png as 3

We’ve applied an existing model to a new image.

Finding out about the network

We can also find out about the network and how it was trained. For this, we’ll
use the command dtoolai-provenance that’s provided when you install the
dtoolAI package. This command displays data about a trained model including the
training data URI. It then attempts to follow that URI to give more information
about the training data:

$ dtoolai-provenance http://bit.ly/2tbPzSB
Network architecture name: dtoolai.simpleScalingCNN
Model training parameters: {'batch_size': 128,
'init_params': {'input_channels': 1, 'input_dim': 28},
'input_channels': 1,
'input_dim': 28,
'learning_rate': 0.01,
'loss_func': 'NLLLoss',
'n_epochs': 10,
'optimiser_name': 'SGD'}
Source dataset URI: http://bit.ly/2NVFGQd
Source dataset name: mnist.train
Source dataset readme:

dataset_name: MNIST handwritten digits
project: dtoolAI demonstration datasets
authors:
- Yann LeCun
- Corinna Cortes
- Christopher J.C. Burges
origin: http://yann.lecun.com/exdb/mnist/
usetype: train

Here we see that model’s network architecture is simpleScalingCNN from the
dtoolAI package, some more information about the training parameters then, at
the bottom, some information about the training data for the model.

Next, we’ll look at how to train a model like this one.

Training a new model

In this example we’ll look at one of the “hello world” example problems of
training deep learning networks - handwritten digit recognition. We’ll use the
MNIST dataset, consisting of 70,000 labelled handwritten digits between 0 and
9 to train a convolutional neural network.

The dataset

In this case, we’ve created a dtool DataSet from the MNIST data. We can use the
dtool CLI to see what we know about this DataSet:

$ dtool readme show http://bit.ly/2uqXxrk

dataset_name: MNIST handwritten digits
project: dtoolAI demonstration datasets
authors:
- Yann LeCun
- Corinna Cortes
- Christopher J.C. Burges
origin: http://yann.lecun.com/exdb/mnist/
usetype: train

This tells us some information about what the data are, who created them, and
where we can go to find out more.

Training a network

We’ll start by using one of the helper scripts from dtoolAI to train a CNN.
Later, we’ll look at what the script is doing.

mkdir example
python scripts/train_cnn_classifier_from_tensor_dataset.py http://bit.ly/2uqXxrk example mnistcnn

This will produce information about the training process, and then report where
the dataset with the trained model weights have been written, e.g.:

Wrote trained model (simpleScalingCNN) weights to file://N108176/Users/hartleym/projects/ai/dtoolai-p/example/mnistcnn

dtoolAI and URIs

In the example above, when we specified where the trained model should be
written, we provided two parameters to the script with values example and
mnistcnn. The second of these, mnistcnn gives the name of the output
model, the first example is a base URI. This concept is explained in
more detail in the dtool documentation [https://dtool.readthedocs.io/en/latest/working_with_datasets.html], we’ll
give a short summary here.

In general when we create model training datasets and trained models, we want to
store these in permanant HTTP accessible object storage with persistent URIs.
However, since this requires setting up Amazon S3 or Microsoft Azure storage
credentials, for simplicity we’ll work with filesystem URIs in these examples.
URIs on filesystem disk are something of a special case. Properly qualified file
URIs have a form like the example above:

file://N108176/Users/hartleym/projects/ai/dtoolai-p/example/mnistcnn

For convenience’s sake, we allow file URIs to be expressed as filesystem paths.
As such the URI above can be simplified to ./example/mnistcnn, and dtool
will internally convert this into a full URI.

Applying the trained model to test data

The simplest way to test our model is on another preprepared dataset - this
allows us to quickly apply the model to many ready-labelled images and calculate
its accuracy.

We have provided the MNIST test data as a separate dtool DataSet for this
purpose, and we can apply our new model to this dataset like this:

$ python scripts/apply_model_to_tensor_dataset.py \
 ./example/mnistcnn http://bit.ly/2NVFGQd
7929/10000 correct

If we want to improve the model’s accuracy, we could try training it for longer.
For example, to train it for 5 epochs (loops through the training dataset)
rather than one, we can run our script again:

$ python scripts/train_cnn_classifier_from_tensor_dataset.py \
 http://bit.ly/2uqXxrk example mnistcnn_epochs_5 --params n_epochs=5

This will train the model for longer.

Viewing the trained model metadata

One of the core features of dtoolAI is capture of references to training data
and metadata about the training process. Let’s look at how we access those
captured data for our newly trained model.

dtoolai provides a helper script, dtoolai-provenance for this purpose. This
will show a model’s training metadata, the references to its training data, then
the metadata for those training data.

$ dtoolai-provenance example/mnistcnn/

Network architecture name: dtoolai.simpleScalingCNN
Model training parameters: {'batch_size': 128,
'init_params': {'input_channels': 1, 'input_dim': 28},
'input_channels': 1,
'input_dim': 28,
'learning_rate': 0.01,
'n_epochs': 1,
'optimiser_name': 'SGD'}
Source dataset URI: http://bit.ly/2uqXxrk
Source dataset name: mnist.train
Source dataset readme:

dataset_name: MNIST handwritten digits
project: dtoolAI demonstration datasets
authors:
- Yann LeCun
- Corinna Cortes
- Christopher J.C. Burges
origin: http://yann.lecun.com/exdb/mnist/
usetype: train

We can see that the model dataset contains both information about how the model
was trained (learning_rate, n_epochs and so on) as well as the reference to the
training data, which we can follow to show its provenance.

What the code is doing

We provide the Jupyter notebook TrainingExplained.ipynb to show how the training
script uses dtoolAI’s library functions and classes to make capturing training
metadata and parameters easier. This notebook’s available
here [https://github.com/JIC-CSB/dtoolai/blob/master/notebooks/TrainingExplained.ipynb],
or if you have a local copy of the dtoolAI repository, in the notebooks directory.

Retraining a model

Deep learning models are powerful, but can be slow to train. Retraining let us
take a model that has already been trained on a large dataset and provide it
with new training data that update its weights. This can give accurate models
much faster than training from scratch, with less data.

Let’s look at how to do this using dtoolAI.

In this example, we’ll take a model called ResNet [https://arxiv.org/abs/1512.03385],
that’s been trained on a large image dataset, and retrain it to classify new
types of images that the network has not seen before.

Part 1: With a preprepared dataset

In this example, we’ll use the CalTech 101 objects dataset. We provide a hosted
version of this dataset in a suitable format. If you have the dtool client
installed, you can view information about this hosted dataset like this:

$ dtool readme show http://bit.ly/3aRvimq

dataset_name: Caltech 101 images subset
project: dtoolAI demonstration datasets
authors:
- Fei-Fei Li
- Marco Andreetto
- Marc 'Aurelio Ranzato
reference: |
L. Fei-Fei, R. Fergus and P. Perona. One-Shot learning of object
categories. IEEE Trans. Pattern Recognition and Machine Intelligence.
origin: http://www.vision.caltech.edu/Image_Datasets/Caltech101/

This version of the CalTech data contains just two object classes - llamas and
hedgehogs. We’ll train a network to be able to distinguish these.

Retraining the model

Since we have data available, we can immediately run the retraining process.
dtoolAI provides a helper script to apply its library functions for retraining a
model and capturing metadata:

$ mkdir example
$ python scripts/retrain_model_from_dataset.py http://bit.ly/3aRvimq example hlama

After some information about the training process, you should see some
information about where the model has been written:

Wrote trained model (resnet18pretrained) weights to file://N108176/Users/hartleym/projects/ai/dtoolai-p/example/hlama

Applying the retrained model to new images

Let’s evaluate the model. We can first try evaluation on a held-out part of our
training dataset. This dataset contains metadata labelling some parts of the
dataset as training data and some as evaluation data. Our evaluation script
takes advantage of this labelling to score the model:

$ python scripts/evaluate_model_on_image_dataset.py example/hlama http://bit.ly/3aRvimq
Testing model hlama on dataset caltech101.hedgellamas
23/25 correct

Now we can test the newly trained model. Try downloading this image:

https://en.wikipedia.org/wiki/File:Igel.JPG

Then we can apply our trained model

python scripts/apply_model_to_image.py example/hlama Igel.JPG

Part 2: With raw data

We saw above how we could retrain a model using data that’s already been
packaged into a dataset. Now let’s look at how we can work with raw data, by
first packaging it then applying the same process.

Gathering data

You can use any collection of images. For this example, we’ll again use the
Caltech 101 objects dataset. which is available here [http://www.vision.caltech.edu/Image_Datasets/Caltech101/].

Download the dataset somewhere accessible and unpack it.

Converting the data into a DataSet

dtoolAI provides a helper script to convert a set of named directories
containing images into a dataset suitable for training a deep learning model.

To use this script, we first need to set up our images in the right layout. The
script requires images to be in subdirectories, each of which is named for the
category it represents, e.g.:

new_training_example/
├── category1
│ ├── image1.jpg
│ └── image2.jpg
├── category2
│ ├── image1.jpg
│ └── image2.jpg
└── category3
 ├── image1.jpg
 └── image2.jpg

We can then use helper script provided by dtoolAI, create-image-dataset-from-dirtree to
turn this directoy into a training dataset.

Assuming that the images are in a directory called new_training_example, and that the
directory example exists and that we can write to this directory, we run:

create-image-dataset-from-dirtree new_training_example example retraining.input.dataset

or, under Windows:

create-image-dataset-from-dirtree.exe

This will create a new dataset and report its created URI:

Created image dataset at file:///C:/Users/myuser/projects/dtoolai/example/retraining.input.dataset

In this example, we’re creating the dataset on local disk, so we would need to copy it to persistent
world accessible storage (such as Amazon S3 or Azure storage) when we publish a DL model based on this
dataset. If you have S3 or Azure credentials set up, you can create persistent datasets directly using
the script described above, changing the example directory to a base URI as described in the
dtool documentation [https://dtool.readthedocs.io].

Retraining on the new dataset

Now that we’ve created our training dataset, we can run the same training script that we used above
on our new dataset, e.g.:

python scripts/retrain_model_from_dataset.py file:///C:/Users/myuser/projects/dtoolai/example/retraining.input.dataset example new.model

Extending dtoolAI

dtoolAI provides everything needed to train image classification networks
“out of the box”. Different types of Deep Learning network will require both
new models and possibly classes for training data.

New forms of training data

dtoolAI provides two classes for managing training data - TensorDataSet and
ImageDataSet. Our examples use these to train models and capture provenance.

The class should:

	Inherit from dtoolai.data.WrappedDataSet. This ensures that it provides
both the methods required by Pytorch (to feed into the model) and dtoolAI (to
capture metadata).

	Implement __len__ which should return how many items are in the dataset.

	Implement __getitem__, which should return either torch.Tensor objects
or numpy arrays that Pytorch is capable of converting to tensors.

Instances of this class can then be passed to
dtoolai.training.train_model_with_metadata_capture.

API documentation

	dtoolai.data

	dtoolai.parameters

dtoolai.data

	
class dtoolai.data.ImageDataSet(uri, usetype='train')

	Class allowing a collection of images annotated with categories to be
used as both a Pytorch Dataset and a dtool DataSet.

	
class dtoolai.data.TensorDataSet(uri)

	Class that allows numpy arrays to be accessed as both a pytorch
Dataset and a dtool DataSet.

	
dim

	The linear dimensions of the tensor, e.g. it is dim x dim in shape.

	
input_channels

	The number of channels each tensor provides.

	
class dtoolai.data.WrappedDataSet(uri)

	Subclass of pytorch Dataset that provides dtool DataSet methods.

This class mostly provides methods that consumers of DataSets require, and
passes those methods onto its internal DataSet object.

	Parameters

	uri – URI for enclosed dtool DataSet.

	
dtoolai.data.coerce_to_fixed_size_rgb(im, target_dim)

	Convert a PIL image to a fixed size and 3 channel RGB format.

	
dtoolai.data.create_tensor_dataset_from_arrays(output_base_uri, output_name, data_array, label_array, image_dim, readme_content)

	Create a dtool DataSet with the necessary annotations to be used as a
TensorDataSet.

	Parameters

	
	output_base_uri – The base URI where the dataset will be created.

	output_name – The name for the output dataset.

	data_array (ndarray) – The numpy array holding data.

	label_array (ndarray) – The numpy array holding labels.

	image_dim (tuple) – Dimensions to which input images should be reshaped.

	readme_content (string) – Content that will be used to create README.yml
in the created dataset.

	Returns

	The URI of the created dataset

	Return type

	URI

	
dtoolai.data.scaled_float_array_to_pil_image(array)

	Convert an array of floats to a PIL image.

	Parameters

	array (np.ndarray) – Array representing an image. Expected to be float
and normalised between 0 and 1.

	Returns

	A PIL Image object created from the array

dtoolai.parameters

	
class dtoolai.parameters.Parameters(**kwargs)

	Class holding key/value parameter data.

This class is designed to make working with a mixture of JSON, string and
object data easier.

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 dtoolai	

 	
 	
 dtoolai.data	

 	
 	
 dtoolai.parameters	

Index

 C
 | D
 | I
 | P
 | S
 | T
 | W

C

 	
 	coerce_to_fixed_size_rgb() (in module dtoolai.data)

 	
 	create_tensor_dataset_from_arrays() (in module dtoolai.data)

D

 	
 	dim (dtoolai.data.TensorDataSet attribute)

 	
 	dtoolai.data (module)

 	dtoolai.parameters (module)

I

 	
 	ImageDataSet (class in dtoolai.data)

 	
 	input_channels (dtoolai.data.TensorDataSet attribute)

P

 	
 	Parameters (class in dtoolai.parameters)

S

 	
 	scaled_float_array_to_pil_image() (in module dtoolai.data)

T

 	
 	TensorDataSet (class in dtoolai.data)

W

 	
 	WrappedDataSet (class in dtoolai.data)

 _static/ajax-loader.gif

_images/dtoolAI-architecture.png
TrainedModel

training
metadata

dtoolAl

disk storage
& | (fle///path/to/data)
3
e} -
k] object storage
E (s3://s3-bucket)
G
3 HTTP storage
(http://data.url.org)

_images/non_mnist_three.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 dtoolAI: Reproducibility for deep learning

 		
 Introducing dtoolAI

 		
 What is dtoolAI?

 		
 Installation

 		
 Installing with pip

 		
 Installing with conda

 		
 Using a trained network model

 		
 Download the scripts needed for this tutorial

 		
 Applying the network to new data

 		
 Finding out about the network

 		
 Training a new model

 		
 The dataset

 		
 Training a network

 		
 dtoolAI and URIs

 		
 Applying the trained model to test data

 		
 Viewing the trained model metadata

 		
 What the code is doing

 		
 Retraining a model

 		
 Part 1: With a preprepared dataset

 		
 Retraining the model

 		
 Applying the retrained model to new images

 		
 Part 2: With raw data

 		
 Gathering data

 		
 Converting the data into a DataSet

 		
 Retraining on the new dataset

 		
 Extending dtoolAI

 		
 New forms of training data

 		
 API documentation

 		
 dtoolai.data

 		
 dtoolai.parameters

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

